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We take interest here in nonequilibrium boundary layers for polytropic viscous flows. A 
quick physical introduction is given, then we propose an extension of an existing numerical 
scheme for the compressible Navier-Stokes equations to take into account slip-boundary 
conditions; 2-dimensional numerical simulations are presented. 0 1990 Academic Press, Inc. 

The prediction of temperature on space shuttles, and more generally on super- 
sonic and hypersonic airplanes, has raised the need for a precise description of 
physical phenomena within the proximity of obstacles. 

Comparison of numerical simulations with experimental data (see, for example, 
[l]) has shown that compressible Navier-Stokes equations with the usual no-slip 
boundary conditions do not give an accurate shock in the case of rarefied gas flows, 
which is our concern for the study of a space vehicle entering the atmosphere. 

This is due to the fact that the equations of fluid dynamics (compressible Euler 
or Navier-Stokes) are an approximation to the kinetic description given by the 
Boltzman equation, valid only when the Knudsen number is small (Kn = A/L, 
where 2 is the local mean free path and L is a local characteristic length of the 
flow). This is not the case near an obstacle, because L is arbitrarily small (smaller 
than the distance to the wall). Consequently, there is a small layer, about one mean 
free path thick, which cannot be described by the fluid equations. In the case of a 
rarefied flow, this layer has a significant thickness, and we want to consider a non- 
equilibrium boundary layer, between the body and the fluid flow, and obtain from 
its study boundary conditions for the latter. 

A simplified boundary layer model, which we will use here, has been obtained by 
Gupta, Scott, and Moss in [2]. Coron, Golse, and Sulem are working on a more 
elaborate model; preliminary results are shown in [3]. 

In part I, we will give a short introduction to the Boltzmann equation and to the 
derivation and validity of the fluid approximation. The boundary layer model, and 
the derivation of boundary conditions for the Navier-Stokes equations will be out- 
lined in Part II (see [2] for more details). Slip and no-slip conditions are compared 
from a mathematical point of view in part III, an adaptation of existing numerical 
methods for the compresible Navier-Stokes equations is proposed in part IV; flow 
simulations are shown in part V. 
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KINETIC BOUNDARY LAYERS 19 

I. BOLTZMANN EQUATION AND FLUID AP~~~x~~A~~o~ 

This is only a very quick and simplified introduction to a large subject; further 
formation can be found in the books by C. Bardos [S] for 
. Brun 141, S. Chapman and T. Cowling [S], Truesdell and 

G. A. Bird [7] (among others) for extensive details. 
At the molecular level, a gas is described by calculating the path of every 

molecule, taking into account its interactions with all the others; of course, numeri- 
cally this is an impossible task. Statistical models assume t at the particles are 
numerous enough, i.e., that the gas is dense enough to allow description by a 
smooth probability function S(x, u, t), defined by 

m dn = f (x, v, t) d3x d3v (I) 

x E R3 position, v E R3 speed, t~43+ time, 

where m is the mass of one particle, dn the number of particles having their 
coordinates in an elementary cell d3x @ d3v of the state s 6, at a given 
time t. 

Then f satisfies 

where C is a collision operator. 
If we also assume that 

~ the particles have no electric charge, 
the gas is monoatomic, so that the particles have only three 

om: the three speed components, 
- the gas is not too dense, so that collisions involving more t 

particles can be neglected, and the collisions are elastic, 

then the collision operator is local in space, and quadratic: 

where 

f =f(v, 01, w) =m, u, t) Cd’1 

fi =f1(v, Vl> WI =fk 01, t) (5) 

f’=S’(v, 01, w) =f(x, v -I- (VI -v, Iv) w, t) 64) 

f;=f;(v,v,,W)=f(X,v1--vl-v, w)w, II, 171 
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with S2 = {w E R3, l/w/l = 1 } and q is the diffusion cross section, it depends on the 
collision modelling chosen. 

The Boltzman equations (2)-(7) is difficult to solve because it is an integro- 
differential equation depending on six variables (seven if the problem is time 
dependent). Probabilistic and deterministic simulation methods exist (see [7 or 91 
for a recent contribution), but they are very expensive. But if our concern is 
aerodynamics, we do not need the complete kinetic solutionf, but only some of its 
moments: the density p(x, t), the momentum pu(x, t) and the total energy E(x, t), 

P(X, t) = JR3 Ax, v, t) d3v (8) 

(PU), k f) = IR3 vifb, 0, f) d3v, 

E(x, t ) = \,+ $ f(x, v, t) d 3v. 

i= 1, 2, 3 (9) 

(10) 

The problem of fluid approximation is to find approximate equations giving p, pu, 
and E without solving the Boltzman equation. 

The collision being elastic, mass momentum and energy are conserved in 
a collision. This implies that 

s Q(.L f) d3v = 0 (11) 

s Q(f, f) vi d3v = 0 (12) 

s Q~ff,‘“lZd3v=0 2 2 

as can be checked directly; 1, vi, lvj2/2 are the summational invariants. Integrating 
(2) over the velocity space, one obtains 

Multiplying (2) by vi and integrating, one obtains 

i (pu)i + F T& ( jR3 uiu:,fd3v) = 0. I 
Multiplying by lvj2/2, and integrating, one obtains 

-++~&,(j~3~vifd3v)=0. 
I 

(14) 

(15) 

(16) 
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By using 

and for a given x and t, ci = vi - ui, one can rewrite ( 1.5) as 

aw ,t+div(p~@u)+div(r)=O, 

where r is the stress tensor, defined by 

zj,j = s C$,f(X, v, I) d3v. 

One can rewrite (16) as 

g+div(Eu)+div(u.r)+divq=O, 

where q is heat flux vector 

q,=j!$cif(x,v, t)d3v. (21) 

These equations are the conservation laws; they involve p, pu, and E, but also other 
moments of j It is necessary to obtain expressions of these moments depending 
only on p, pu, and E and of their derivatives: we want a closing relation for (Id), 
(1% (16). 

In order to do that, we go back to the Boltzman equation. One can show by 
taking the continuous limit of a discrete model that the probability of a state 
{ f(x, v, r), x E R3, v E R3 > is given by the opposite of Boltzman’s 41 function: 

H(t) = - /JR6 f Log f d3x d3v. (22) 

H can be shown to be decreasing in time for an isolated system: it is an entropy. 
The state with the minimum entropy is the most probable state; it is necessarily a 
Maxwellian, 

Mb v, t) = (2x(&m))3,’ exp 
/v-u/2 

-?i(i3$$ ) 

where p, U, and T are the density, the average speed, and the temperature, an 
where k is Boltzmann’s constant, m is the mass of the molecules. 

Such a state is said to be at equilibrium; one may suppose that f is locally 
“not far” from a Maxwellian when there are no perturbations (shocks, walls, initial 
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layers, etc.) near the point under consideration. This is the base of the Chapman- 
Enskog expansion: one tries to findfas a Maxwellian plus a small perturbation. 

The zero-order expansion is obtained by supposing that f is a Maxwellian 

fb, u, 1) = Mx, 0, t). 

Replacing f by A4 in (19), one obtains 

Tq=P(x, t, T(x, t, 6i,j=P(x, t, 6i, j; 

(24) 

p: pressure. 
Replacing f by M in (21), one obtains q = 0. 
So (14) (18), and (20) are now the compressible conservative Euler equations: 

&J z + div(pu) = 0 (25) 

a(P) at + div(pu 0 U) + Vp = 0 (26) 

aE 
Z+div((E+p)u)=O. (27) 

To have a more accurate result, we suppose that 

f=Wl +@I, 4 = fp(x, 0, t), (28) 

where E = l/Kn. 
The nondimensionalized Boltzman equation can be written as 

~+v*.V,f*=~Q(f*,f*); (29) 

replacing f* by M*( 1 + $), we obtain 

-i p&w*, M*)] + (T + v* . v,A!f* - 2Q(M*, M*(b) 
> 

+ &F(M) = 0. 

Supposing the factor of order l/s to be zero, we obtain Q(M*, M*) = 0, which is 
equivalent to M* being a Maxwellian: we again tind that the lowest order 
approximation is a Maxwellian. 

By equating the factor of order zero to be zero, we obtain 

a&if* 
dt + v .V,M* - 2Q(M*, M*d) = 0. (30) 

This is a Fredholm integral equation for d, the orthogonality of the left-hand side 
expression to the null space of the operator gives the Euler equations. 
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The equation (30) is difficult to solve and does not yield useful results because 
the expression for C$ is too complicated. But one can obtain a good approximation 
of the solution by taking 4 as a linear combination of two special eigenvectors of 
the operator: the two first Sonine polynomials. 

After some calculations, one obtains 

where K is a normalization constant. 
Equation ( 19) then gives 

=2p[i (Vu+Vu’)-f (div(u))l] +p, (32) 

where 1-1 is the first viscosity, 

(33) 

for a Maxwellian interaction potential. 
Equation (21) gives 

q=xVT (34) 

where x is the heat diffusion coefficient; (14), (Ig), and (20) are now the conser- 
vative compressible Navier-Stokes equations 

dt + div(pu 0 u) + Vp 

= div -p (Vu+Vz+~div(u)l 
i 

(37) 

+ div( - 1 VT). (38) 
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Remark. These values for ,u and 1 are valid only for a monoatomic gas with a 
Maxwellian interaction potential. For a diatomic or a triatomic gas, a similar 
theory can be developed, but it is much more complicated because the diffusion 
cross section is not spheric. 

The Chapman-Enskog approximation is obviously not valid in the 
neighborhood of a wall, a sufficient reason for that being the anisotropy introduced 
by the obstacle. 

II. NONEQUILIBRIUM BOUNDARY LAYER MODELS 

The general problem of boundary layers is to derive boundary conditions (see 
Fig. 1) for the fluid flow from an assumed behavior of the particles when they hit 
the wall. The usual formulation of this problem is shown in Fig. 2. 

Given a set of fluid variables at the edge of the Knudsen layer p,, (pu),, E,, the 
corresponding Navier-Stokes probability function f, = M,( 1 + ~~4,) is known and 
consequently the incident fluxes: for #;= 1, o,, uY, u,, Iv12/2, 

Fi=j+m j” j+m U,(bifs(U) d3u. 
-m -cc -0z 

Resealing the problem by l/A, the calculation of the reflected fluxes Ri is a classi- 
cal half space problem (see [3 or lo]). The boundary conditions are given by 
equating the sum of the incident and reflected fluxes to the known boundary flux 

Fi$Ri=Gi (39) 

with 

G,=J+” 1’” 1’” ~,,~~f,(u)d~u. 
--m -8x -m 

(40) 

To avoid resolving the half space problem, one makes assumptions on the behavior 
offin the Knudsen layer. 

Knudsen layer 

Fluid flow 

FIGURE 1 
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VI, s Y 

FIGURE 2 

We reproduce here the main points of the rationale developed by Gupta, Scott, 
and Moss in [2]. They assume that: 

- a proportion 8 of the particles hitting the wall is accomodated and re- 
emitted according to a Maxwellian law, the rest is specularly reflected (8 is t 
accomodation coefficient), 

- the fluxes are constant during a “one-way travel” through the 
layer. 

The second hypothesis is a very strong one; it rules out shoal-boundary layer 
interaction. In this context, 

where P&Y t) 
fwv(x~ v3 t, = (2n(H,(x, t)/m)p2 exp 

--/u12 
WQ-,(x, t)lmt 

Equation (39) then gives the following boundary conditions, whenf, is replaced by 
its value, and after simplification, 

where s indices refer to the values at the surface between the Knudsen Bayer an 
fluid flow, IZ is the inward unit vector, z, and z, are the two tangential ~orrna~~~e 
vectors, 
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D(u)=Vu+Vu’-$div(u)l 

(45) 

where P, is the normal momentum flux. 
Only (40) and (41) are useful for the fluid calculation if T, is unknown; (42) and 

(43) allow calculation of the pressure and temperature on the wall once the fluid 
flow is known. 

More accurate models are under investigation at the Ecole Normale Suptrieure 
(Bardos et al.); they introduce a boundary layer term x in the Chapman-Enskog 
expansion: if the wall is located at x=0, 

f=M(l+cd)+x ;,,I, t . 
( 1 

By resealing the equation, one obtains a half-space problem for x, the well-posed- 
ness of which implies the necessary conditions for M( 1 + ~4) and, consequently, 
boundary conditions for the fluid flow. Preliminary results [3] show that the 
boundary conditions obtained are of the same kind, but with coefficients which are 
more reliable than those above. 

III. THE COMPRESSIBLE NAVIER-STOKES EQUATION 
WITH SLIP BOUNDARY CONDITIONS 

We restrict ourselves to the 2-dimensional case for simplicity, and we assume the 
viscosity and heat diffusion coeflicients to be constant (see Fig. 3), where 0 E R2 

FIGURE 3 
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represents the obstacle, Q the flow domain, r= 30, Tcr; = &JJr. %he ~o~dirne~- 
sionalized Navier-Stokes system is then 

am4 tfdiv(gu@u)+Vp=$e 

dE 
z+div((E+p)u)=k 

in L?, where 

UE ’ is the speed 
p = (y - I)pT is the pressure, 
Re is the Reynolds number at infinity, 
Pr is the Prandtl number, 

with boundary conditions on r, 

u.n=o (471 

n.D(u).z= -Apu~z (48) 

~u.n(u).n+--= 

Y dT o 

PrRe &r ’ 

here n is outward normal unit vector to r, z a unit vector tangential to r, an 
(u) =vu ad-$hd. 
Equation (47) is a natural boundary condition, assuming there is no mass 

through the Knudsen layer. Equation (48) is given by (40) and (41); A is 
constant, depending on the nature of the gas in consideration and on its 

where c is a physical constant, c E lo7 U.S.I. for air, and pcG is the physical density 
of the gas for away from the body, p uj = I, 2 kg m -3 at ground level, 
pX = 1W7 kg rn-’ at an altitude of 120 km. The characterisation of the rarefaction 
of the flow in Eq. ((47)-(53)) is the free-stream density because the equations are 
~o~dime~sio~alized by taking p = 1 at the inflow boundary. f course, the density 
in the vicinity of the wall might be much higher than th free-stream ‘~~~si~~, 
depending on the strength of the shock, so that the slip velocity does not 
on A only, but also on the free-stream Mach number, for example. 
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Equation (49) is the consequence of the known adiabaticity of the wall. We 
assume the flow at infinity to be uniform, 

24 = (cos a, sin a) (51) 

p=l (52) 

1 
T= 

Y(Y--)W 
(53) 

where A4, is the free-stream Mach number and a is the angle of attack. 
In fact, we enforce the boundary conditions (51), (52) (53) totally or partially, 

according to a local linearized characteristic analysis. 
Theoretical results on the compressible Navier-Stokes equations are scarce (see 

[l 1 ] for a local in time result), but one can check a few necessary conditions for 
the well-posedness of the problem: decay of energy and entropy of a smooth 
solution, coercivity of the viscous term restricted to the speed space, number of 
boundary conditions compared to the signature of the convection Jacobian matrix. 

We assume the external boundary r, to be sufficiently far from the body for the 
flow to be uniform in its neighborhood; consequently all derivatives of p, U, and E 
are zero on rm. 

The decay of energy is very easily obtained, 

$(j/)= - jQv4(E+p)4+$ jQVW(4)+& j/T 

On r, 

u.n=O 

Y aT &.D(u).n+- 
PrRedn- - 0, 

so the boundary flux is zero. 
On rm, D(u)=O, dT/dn =O, and (E+p)(u.n) is constant, so 

s (E + p)(u . n) = 0, r‘z 
thus 

d 

-0 > dt o 
E =O. 
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The decay of entropy is slightly more difficult to obtain. The entropy 
mass is ps, with 

Combining (44), (45), and (46), we obtain 

aps --g+v.(pus)= - & &AT+F~~ c i 
(55) 

with 

or 

F(Vu)= (Vu+Vu’- @) : vu 1561 

Y aT -= 
Re Pr an 

-&.D(u).n. 

ut on r, u = (2~. T)T, so that 

Y al- --= 
Re Pr an 

-$p.‘)‘.“(U).“. 

Using (48), 

y aT A 
--=-p(U.T)*~o~ 
Re Pr an Re 
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On Too, aT/an = 0, ps(u . n) is constant, so we obtain 

6 0. (60) 

Coercivity of the Viscous Term 

The following results are extensions of R. Verfurth’s work on the incompressible 
case (see [12]). The question is on the existence and uniqueness of a solution 
UE (H’(Q)) of 

-div(D(u)) = g in 52 (614 

u.n=O in r (61b) 

n.D(u).t= -A(u.z) in r (61~) 

for 0 bounded domain of R2, gEL2(SZ), where A is a positive constant, n is the 
outward normal unit vector to dQ, and z is a tangential vector to dQ. 

Let V= {uEH’(Q)~, u . n = 0 on aQ>. If we assume aQ to be regular (say C’), 
the function 

n:d!2+R2 

x--f n(x) 

is C1 and, consequently, the trace operator 

H’(Q) ---t H”2(r) 

u+u.?l 

is continuous (see [12] for details). So V with the H’(O) norm, as a closed 
subspace of H’(Q), is a Hilbert space. 

Let 4 E V; (61) implies, integrating by parts, 

(62) 

s,- 4 .D(u) . z is a well-defined integral if we take u such that -div(D(u)) E L2(Q), 
because then n.D(u)j,EH-1’2(T). 

Equation (61~) then implies 

‘d$ E H “‘(I-), 
s 

(n.D(u).z+Au.z)$=O 
I- 

OVqsE v, s (n.D(u).z+Au.T).(qS.T)=O. 
I- 
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Equation (62) then implies 

Conversely, it is well known that (63) and u E V imply (61); (63) first implies that 
-div(D(u)) = g in the distribution sense, so that div(D(u))EL2(Q), and conse- 
quently we have the boundary condition (61~) in H-1’2(T). 

To use LaxPMilgram’s theorem, we must prove the coercivity of the bilinear 
form 4; 

I$: V+R 

here we recall that A is a strictly positive constant, 

ID(u)12= Ivu+vu’-+lr12= IVueVu’l2-+$( 

$qu)12 + $(V. u)’ = +Ivu +Vu’J2 - $(V . u)“, 

6f M = (u, w), 

so vu E pi’(Q), 
$ID(u)l 2 + $(div u)’ B $VU + Vu’\ 2. 

e will now recall two classical lemmas. 

LEMMA 1 (Korn’s inequality). There are two positive constants, depending on 
such that 

A proof is given in [13]. 

bdMA 2 (Poincare-Morrey). There is a constant C,(.Q), strictly positive, suc3: 
that 
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ProoJ: See [12, Lemma 2.21. 

PROPOSITION 1. d is coercive. 

ProoJ (64), (65), and (66) imply ~(u)~Cll~ll~l~~, VUE I’, if C<(C,/12) 
(l/2 + C,/C,) and C < A(C,/C,). So, by Lax-Milgram’s theorem, (61) has a unique 
solution. 

It is easy to check that no such result exists in three dimensions. 

Weak Formulation of (44)-(49), (51)-(53) 

It is well known that the boundary condition U. y1= 0 cannot be enforced 
strongly on a polygonal domain: if, for example, u is piecewise linear, ifs is a corner 
of the boundary, U, . IZ~ = 0, U, . n2 = 0, so U, = 0. This means u = 0 on the boundary. 
Consequently, we will take a weak formulation in (H1(0))4. 

Let d, EEH’(S~), +EH’(Q)*, (44)-(49) (51)-(53) be equivalent to 

; j EE- j (E+p)u.VE+ i,, (Eo+Po)(u.n)E 
D n 

1 
s 

Y 
Re R 

u~D(u)~v&-- 
Pr Re I 

VT.VE 
sz 

(67) 

(68) 

where uo, po, To, Eo, PO are u,, pm, T,, E,, pco or u, p, T, E, P depending on 
the signature of the jacobian matrix of the convective terms (see [14 or 151 for 
details ). 
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IV. NUMERICAL METHOD 

Efficient finite element methods have been developed in the recent years for the 
compressible Navier-Stokes equations (see [ 14, 151). hey rely on mm-cd 
Calerkin approximation with artificial viscosity or upwind finite volume solvers, for 
the Euler equations (see [16, 171). We will only outline these methods here. 

The functional space (H’(Q)) 4 is approximated by (P”(sk,))4, where G?, is a 
polygonal approximation of 52, and P,(sZ,) is the space of piecewise linear functions 
on a standard triangulation of 52,. The discretized variational form~lat~~~ then 
reads 

where 

E(w,, c$~) stands for the convection terms, depending on the approximation chosen 
(we usually take an upwind Osher approximation, see [IS] ), N(w,, tih) stan 
the diffusion terms 

with 

Nl(Whr $3 = 0 9723 

where $t, = ($i)i= 1,4, uh and T,, are P' approximations of @)Jph and Eh/ph- 
~/NP4/J21P~~ respectively (one can check that uh an T, are still ~rst-o~~~~ 
approximations of u and T). 
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One is usually interested in stationary solutions, so classical time discretizations 
are delta schemes, 

with M the identity operator for an explicit scheme, a linearization of E in most 
implicit schemes. 

Slip boundary conditions introduce a new problem: A is often a large constant, so 
the system (75) may be ill-conditioned. That is why, while (75) with M= I- At aE, 
aE being a linearization of E, is quite efficient with no-slip boundary conditions, 
here it is not: the Courant number is drastically limited for A greater than unity. 

We introduce a totally implicit factored scheme, 

M= (I- At aN)(Z- At aE), (76) 

where aN is a complete linearization of N, including boundary integrals, 

+&ii V(6T,,) .Wt, Qn 

where 8wh=w~+l-w~. 
Equation (76) is solved at each time step in two successive operations: 

(I- At aE)(dW,) = At[E(w;) + N(w;)] (78) 

is solved with respect to the conservative variables, and 

(I- At aN)(dw,) = 6 W, (79) 

is solved with respect to the nonconservative variables. 
Although an improvement over existing methods, (76) is not stable enough to 

allow very high Mach nuber and low Reynolds flow calculation, which is our goal 
for the study of a shuttle reentry. A totally implicit scheme with viscous terms 
calculated from the conservative variables is being developed. 
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V. FLOW SIMULATIONS 

These computations were performed on the Cray of the C.C.V.R. and on the I 
3090 of ~~~-BA. 

Transonic, supersonic, and hypersonic calculations were performed with sli 
no-slip boundary conditions, at different densities, around a ~ACAOOl2 airfoil and 
a cylinder; comparison with experimental data taken from [ 1 ] is m 
preliminary study, the emphasis has been made on the effect of the bou 
tions on the continuum flow, outside the Knudsen layer. articular attention has 
been given to the shock shape and location. 

The first computation made is a flow over a NACAOOIZ airfoil at a 
number of 2 and a Reynolds number of 106. Two results are presented: the no-slip 
flow and the flow at a density of 1O-5 kg/m3. The experimental flow~eld~ at a 
density of IQ-’ kg/m3, taken from [I], are superimposed. The isodensity lines are 
shown on Fig. 4. The experimental data is displayed on the upper half of the 
only, in a thicker and darker line. It appears that slip boundary conditions improve 
the precision of rumerical results, although the closest to experiment result is 

b \ v 

FIG. 4. (a) No-slip iso-density lines. (b) Slip iso-density lines. 
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obtained for p o. = 10P5 kg/m3, which is not the experimental density. The accom- 
modation coefficient was taken to be 8 = 0.4. 

A transsonic flow over a NACA0012 airfoil is presented. The Mach number is 
0.85 and the Reynolds number is 500; four results are shown: the no-slip flow and 
three rarefied flows at densities of 10e5 kg/m3, lop6 kg/m3, and lop7 kg/m3. 
Figure 5 is a comparison of the iso-Mach lines obtained with different boundary 
conditions. Figure 6 is a comparison of the Mach numbers at the edge of the 
Knudsen layer. It is clear that the boundary condition has a spectacular effect on 
the results: while the no-slip flow is only weakly transsonic because of the viscous 
effects, the most rarefied one has all its viscous influence concentrated in the wake 
and is consequently strongly transsonic, with a maximum Mach number of 1.35. 

We then computed a high speed flow over a cylinder, at a Mach number of 8 and 
a Reynolds number of 1000; four results are presented: the no-slip flow and three 
rarefied flows at densities of 10e4 kg/m3, lo-’ kg/m3, and lop6 kg/m3. Figure 7 
shows the mesh, which has about 5000 nodes; Fig. 8 shows a comparison of the iso- 
Mach lines. The viscous boundary layer shrinks up to almost disappearing, except 
around the detachment point; this reduces the “effective” or “inviscid” thickness of 
the obstacle and makes the bow shock closer to the wall when the gas is rarefied. 

f\ 
d 

FIG. 5. Iso-Mach lines: (a) No slip; (b) pou = 1O-5 kg/m3; (c) pm = 10m6 kg/m3; (d) p, = 
10m7 kg/m3. 
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FIG. 6. Mach number on the body: (a) pm = 10~5kg/m3; (b) 
10 -’ kg/d. 

p,-= 10m6 kg,‘m3; (c) 4 = I 

FIGURE I 



a 
NO SLIP CONDITION 

ISO-MACH LINES 

FREESTREAM MRCH 8.00 RE 1000.00 

RNGLE OF RTTACK 0.00 SET 2 

b SLIP CONDITION DENS = l.D-q KG/M3 

ISO-MRCH LINES 

FREESTRERM MRCH 8.00 RE 1om.m 

IGLE OF RTTRCK SET 9 

FIG. 8. Iso-Mach lines: (a) No slip; (b) pm = 10m4 kg/m3; (c) pm = low5 kg/m’; (d) pm = 
10m6 kg/m3. 
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SLIP CONDITION DENS = 1.0-5 KC/M3 

ISO-MACH LINES 

I 
FPEESTPERM MRCH E.BO SE 1333,33 

L 

SLIP CONDITION DENS = i-D-6 KG/M3 
j 

ISOmMRC* LINES 
I 

I FSEESTRERIJ MRC’. e.oo RE :006.08 
I 

FIG. 8-Contimed 
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a 

NSC REY=lQOQ. 

CHAMP DES VITESSES 

INCIDENCE 0.m C.F.L. 20.8 

ITERRTION ‘u 0 

FIG. 9. Speed vectors directions behind the cylinder: (a) No slip, (b) pm= 10e4 kg/m3; 
(c) pm = lo-‘kg/m’; (d) pm = 10m6 kg/m3. 
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NSC RET=hO@@. 

CHRMP DES VITESSES 

INCIDENCE 0.08 C F . I- m.1 
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FIG. 9-Continued 
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C 

NSE FEY=l1OB@. 

CHRMP DES VITESSES 

INCIDENCE 9.m C.F.L. 8.1 

MRCH INFlNI 8.813 ITERRTION m 

FIG. 9-Continued 
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NSC REsEr=1888. 

CHRMP DES VITESSES 

INCICEkCE 0.03 C.F.L. u.0 

MPCk i,~~IN! t3.m ITERRTION 0 L 

FlG. 9-Conlimed 



a NO SLIP CONDITION 

ISO-MACH LINES 

FREESTRERM MACH 8.00 RE 1000.00 

RNGLE OF ATTRCK SET 2 

ISO-MRCH LINES 

FREESTREAM MRCH 8.00 RE 1000.00 

FIG. 10. Enlargement of the iso-Mach lines: (a) No slip; (b) pm = 10m4 kg/m3; (d) pm = 10m5 kg/m3; 
(d) pm = 10m6 kg/m3. 



/r SLIP CONDITION DEN5 = l-D-5 KG/ 

ISO-MRCH LINES 

FREESTRERM YRCH 8.W RE 1000.00 

ANGLE OF RTTRCK lx.08 SFT 8 

i I- 
I- 

SLIP CONDITION DENS = I.&6 KG/M? 

IS@-tWCH LINES 

FREESTREAM MACH 8.00 RF 100@.BO 

lGLE OF RTTACK n.00 SET 12 
I / /". / 

FIG. IO-Continued 
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a 
NO SLIP CONDITION 

LIGNES ISO-DENSITE 

FRFFSTRERM MRCH 8.00 RE laflB.flO 

LIGNES ISO-DENSITE 

FREESTRERM MRLH 8.80 Fit 

FIG. 11. Enlargement of iso-density Imes: (a) No slip; (b) poo = 1V4 kg/m3; (c) = 10m5 kg/m’; 
(d) pm = 10m6 kg/m3. 
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SLIP CONDITION DENS = i-D-5 KG/l43 

I LIGNES ISO-LIENSITE 

FKESTREPM MRW 8.00 FIE 

SLIP CONDITION DENS = l.DM KG/M3 

SET 12 
- 

EL==--- - --~ 



a 
i 

NO SLIP CONDITION PRESSION 

PLAQUE UlUlP 

MRCH 8.00 REYNOLDS 1000 

WET= 2 
_~._. 
1 SLIP COND RHO=l.D-II PRESSION 

PLRQUE 41'4lP 

MACH 8.00 REYNOLDS lOO@ 

MRX = -0.00859 

MIN = -1.83116 

FIG. 12. Pressure coefficient on the body: (a) No slip; (b) pm = 10m4 kg/m’; (c) pm = 10m5 kg/tn3; 
(d) pm = 10m6 kg/m3. 48 



1' SLiP COND SYO=l.dmi PRESSIO\: 

PKRQJE qlll;F 

?lflCH 8.80 REYNCILDS lmx 

INCIDENCE O.OO/- 

FIG. 12-Continued 
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t 

= NO SLIP CONDITION DENSITE 

PLAQUE LillllP 

MRCH 8.00 

INCIDENCE O.BO 

REYNOLDS 1lXlO 

ITERRTION 800 

) SLIP COND RHO=l.D-LI DENSITt 

PLAQUE 4llllP 

MACH 8.00 REYNOLDS 

INCIDENCE 0.00 ITERATION 

FIG. 13. Density on the body (p/p,): (a) N o 
(d) p, = 10m6 kg/m3. 

slip; (b) pea = 10m4 kg/m3: (c) pm = 10m5 kg/m3; 
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!TE 
I I 

PLRQUE 41qiP 

MFlCY 8.80 

INCIDENCE 0.00 

REYNOLDS :030 

ITEPRTION 5OOE 

FIG. 13--Continued 
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a NO SLIP CONDITION COEF DE FROTTEMENT 

PLRQUE U141P 

MACH 8.00 REYNOLDS 1800 

INCIDENCE 0.00 ITERRTION 800 

) SLIP COND RHO=l.D-LI COEF DE FROTTEMENT 

PLHWk 4141P 

MACH 8.80 REYNOLDS 1000 

INCIDENCE 8.80 ITERATION 6088 

FIG. 14. Skin friction coeficient: (a) No slip; (b) pm = 10m4kg/m3; (c) pm=10m5kg/m3; 
(d) pm = 1O-6 kg/m3. 52 



__- 
SLIP CON9 RHO=l.D-5 Clltk DE FROTTEMENT 

PLFQUE 41'41P 

MACH 8.00 REYNOLDS 1 rlclo 

INCIXENTF 0.00 ITERATION 6000 

MRX = 1.00529 

MIN = -o.ooo"u 

FIG. 14-Continued 
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The recirculation zone between the wall and the stagnation point is smaller for 
rarefied flows, moving with decreasing densities to the perfect gas solution. 
Figures 9, 10, and 11 are comparisons of the rear body flows. Figures 12, 13, and 
14 are plot of the pressure, density, and friction at the edge of the Knudsen layer. 
Pressure and density are not much affected by the boundary conditions, but the 
friction decreases quickly as density decreases, which is the awaited behaviour. 

CONCLUSION 

Significative differences appear between slip and no-slip simulations, the former 
seeming to be closer to experimental results. Bow shocks are closer to the obstacles 
for slip flows, as indicated by experiment, and the slip boundary conditions give 
more generally solutions in better qualitative agreement with the awaited 
behaviours. Nevertheless, more accurate comparison with experiment will have to 
be made before the model can be tuned and validated. 

The slip boundary conditions have been shown to be well posed in the sense 
of conservation. They have been included in a numerical scheme to solve the 
compressible Navier-Stokes equations, at no major increase in computational cost. 
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